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THERMODYNAMIC PROPERTIES OF LIQUID
WATER UP TO 8000 BAR AND BETWEEN
25 AND 150°C

BONGKEE CHO**, KYU-YONG CHOI

Department of Chemical Engineering, University of Maryland, College Park,
Maryland 20742, USA

and

SOON-DON CHOI

Department of Metallurgical Engineering, Yeungnam University, Gyongsan,
Gyongbuk, Korea.

( Received 8 November 1990)

A simple equation of state for the condensed phase, proposed by Cho, is applied to liquid water under
pressure up to 8000 bar and between 25 and 150°C. The agreement between measured and calculated
volumes is satisfactory over the entire range of temperatures and pressures. The equation shows that the
abnormalities in the temperature and pressure dependence of the thermal expansivity, isothermal
compressibility and the heat capacity are predicted quite accurately from PVT data only. The values of
thermal expansivity, isothermal compressibility, and heat capacity at constant pressure are calculated, and
detailed comparisons with the experimental values are made.

KEY WORDS: Thermal properties of water.

I INTRODUCTION

A simple equation of state proposed by Cho has recently been shown to represent
the PVT properties of polymers'? and simple liquids® very well. The equation of
state takes the form?!2

V = Vo[K/(K + P)], (1)

where V is the volume at pressure P and temperature T, V, is the zero-pressure
volume at T, C is a constant, and K is given by!-2

K = K, exp(—kq). 2)
For liquids the temperature dependence of ¥, and k; are as follows?'3:
ln I/()=b0+blT+b2T2+b3T3 (3)
* Author to whom correspondence should be addressed.
% On leave from Department of Chemical Engineering, Yeungnam University, Gyongsan, Gyongbuk,

Korea.
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and
ke =k, T+ k,T? + ky T3, (4)

where b, — b, and k, — k, are constants for specified material!2. Since for most
condensed phases k; ~ 107!, Eq. (2) can be expressed approximately as

K=Dy—D,T ~D,T*— D,T?, (5)

where Dy = ko, Dy = koky, D, = kok,, and Dy = kok,y. This expression is quite
useful in the temperature range of interest.

Recently, it was found that from the equation of state the thermodynamic
properties of polymer can be predicted quite accurately?“. In this work, the equation
is used to explain the abnormal properties of liquid water up to 8000 bar in the
temperature range from 25 to 150°C.

Experimental PVT data considered here include: (1) the compression data of
Grindley and Lind*(GL) in the range from 25 to 150°C and from 0 to 8000 bar; (2)
the compression data of Kell and Whalley® (KW) in the range from 25 to 150°C and
from 0 to 1000 bar; and (3) the compression data of Chen, Fine, and Millero” (CFM)
in the range from 25 to 100°C and from 0 to 1000 bar.

II' RESULTS
A Analysis of PVT data

The parameters in Egs. (1) and (3) were first determined for water. The necessary
experimental PVT data were taken from the literature. The results are given in Tables
1 and 2. Units are cm?3/g, bars, and Kelvin temperature K. The standard deviations
a(Vy) and o(V) are given in the final columns of Tables 1 and 2. Figure 1 shows a
comparison between experimental values of volume® and those calculated by using
Eq. (1) with parameters based on GL data. Within the scale of the figure, there is no
discernible difference between the data and the calculated values. Table 3 compares
experimental and calculated zero pressure volumes and thermal expansivities by using
Eq. (3) with parameters based on GL data. For Eq. (1) with Eq. (5), the PVT data
of GL give
K = —2.25876 x 10* + 2.03807 x 10°T
—5.06494 > 107 1T? + 393640 x 107477,

C = 0.16362,

and o(V) = 2.75 x 10~*,

Here, K 1s in bar and T in K.
From the temperature dependence of the zero-pressure bulk modulus, we have!-2
dinK
dT

= —dxg + g(T) (6)

= —(k, + 2k, T + 3k3 T + g(T), )]
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Figure 1 Comparison of experimental isotherms () of water with theoretical isotherms (solid lines).

Table3 Comparison of experimental and calculated values of 1, o5, and .

T(°C) Vo, cm?/g %, x 103, deg™! Bo x 10%, bar™1

Expt® Calc® Expt® Calc® Expt® Calc?

30 1.00442 1.00443 0.3135 0.3197 0.4494 0.4523
(0.4482)

50 1.01215 1.01224 0.4581 0.4531 0.4423 0.4467
(0.4418)

70 1.02279 1.02275 0.5840 0.5791 0.4502 0.4528
(0.4473)

90 1.03598 1.03591 0.6965 0.6978 0.4767 0.4697
(0.4615)

110 1.05165 1.05165 0.8041 0.8091 0.5103 0.4974
(0.4838)

130 1.06985 1.06993 09125 0.9130 0.5566 0.5363

150 1.09080 1.09072 1.0232 1.0096 0.6234 0.5869

® Data from Ref. 5.

® Data from Ref. 9, bracketed values represent the data of Ter Minassian et al., Ref. 8.

¢ Calculated from Eq. (3).
4 Calculated from Eq. (13).
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where J is the zero-pressure Anderson-Gruneisen constant, o, is the zero-pressure
thermal expansivity aq = (@ In V,/0T)p, and ¢(T) is a function of temperature
only. For most condensed phases, the second term on the right-hand side of Eq. (7)
is ordinarily much smaller than the first term. Therefore, a good approximation is'2

din K
dT

= dk,/dT (8)

= —(k, + 2k, T + 3k, T?). %)
In this work, we use Eq. (9) for the temperature dependence of d In K/dT.

B Thermal expansivity

From Eq. (1) we have'-?

oz:oco—KC_:)P %? (10)
From this we have
Ju CK  dky
(7).~ &t “”
Letting o — o, as P — o0, it follows from Eq. (10) that
o, = oy — Cdky/dT). (12)

Equation (11) shows that the rate of change of o with pressure is rapid at low
pressures and becomes less rapid at high pressures, and as the pressure becomes
infinite & approaches the limiting value ,,. According to the result calculated from
Eq. (9) based on the PVT data of GL, dk/dT = 0 at T, = 322.65 K, and dk,/dT < 0
below T, and dk;/dT > 0 above T,. Thus, it follows from Eq. (11) that (0a/0P); > 0
below T, and (0a/0P); < 0 above T, and at T, (0o/0P); = 0. Therefore, « increases
with increasing pressure below T, and decreases with increasing pressure above T,,
and at T, « is independent of pressure. These agree with the experimental results®®.
Using the PVT data of CFM’, we have T, = 323.31 K, and using the PVT data
of KW®, we have T, = 320.75 K which is much smaller than others. According to
the experimental results of Ter Minassian et al.%, the corresponding temperature is
3223 K.

Figure 2(a) shows the general aspect of the isotherm of « as a function of pressure
calculated from Eq. (10). As shown there, at high pressures the isotherms intersect,
so that at higher pressures o at the higher temperatures is lower than it is at the
lower temperatures. Such behavior has been observed experimentally®. The isobars
as a function of temperature are shown in Figure 2(b). All calculations in Figures
2(a) and 2(b) are based on the parameters obtained from the PVT data of GL. As
shown in Figure 2(b), all isobars intersect at T, since « at T, is independent of pressure
over the entire range of pressure. The sign of the derivative (dx/0T)p changes in the
vicinity of 5.2 kbar. The thermal expansivity increases with increasing temperature

PCL-B
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Figure 2 General aspect of the behavior of the thermal expansivity of water, (a) as a function of pressure,
{(b) as a function of temperature. The number indicated on the isobars is in kbar.
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Table 4 Comparison of experimental® and calculated ® values of o

a x 103, k™1 deg™!

P(bar) 30°C 50°C 100°C 150°C
Expt Calc Expt Calc Expt Calc Expt Calc
200 0.3248 0.3311 0.4547 0.4527 0.7182 0.7282 0.9551 0.9565
(0.3257) (0.4677) (0.7314) (0.9811)
600 0.3486 0.3504 0.4543 0.4520 0.6672 0.6838 0.8562 0.8691
(0.3527) (0.4669) (0.6883) (0.8712)
1000 0.3728 0.3664 0.4581 0.4514 0.6304 0.6474 0.7851 0.8002
{0.3757) (0.4661) (0.6492) (0.7817)
3000 0.4328 04175 0.4572 0.4496 0.5264 0.5339 0.5968 0.5986
(0.4410) (0.4639) (0.5256) (0.5474)
5000 0.4500 0.4449 0.4508 0.4486 0.4747 0.4745 0.5081 0.5005
(0.4653) (0.4630) (0.4741) (0.4672)
7000 0.4470 0.4620 0.4409 0.4479 0.4407 0.4380 04577 0.4424
(0.4754) (0.4627) (0.4517) (0.4347)
8000 0.4448 0.4683 0.4378 0.4477 0.4277 0.4245 0.4420 04215
(0.4779) (0.4626) (0.4461) (0.4269)

* Data from Ref. 9, bracketed values represent the data of Ter Minassian ez al, Ref. 8.
" Calculated from Eq. (10) based on the PVT data of GL.

below this pressure, but above this pressure a minimum in « is predicted to occur
at a certain temperature Ty, whose value depends on the pressure. For a given
pressure, « decreases with increasing temperature below Ty and increases with
increasing temperature above Ty. These results agree with experimental results®,

In Table 4, the values calculated from Eq. (10) using the parameters based on GL
data are compared with the experimental values®. Values in brackets represent the
calculated values by using the empirical equation of Ter Minassian ef al.® with the
coeflicients reported in Ref. 8.

C Isothermal compressibility

From Eq. (1) the isothermal compressibility, f = —(0In V/dP);, is represented
byl,z

= ¢ (13)
K+ P
From this we have
0 CK dk
<_ﬂ) _ K _dkr (14)
oT)p (K + Py dT

By comparing Eq. (11) with Eq. (14), we have

(o).~ ()
oP); “\or b (15)

which is the Maxwell relation.
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Since dk;/dT < 0 below T, and dk;/dT > 0 above T, it follows from Eq. (14)
that (08/8T)p < O below T, and (68/0T)p > 0 above T,. Thus, as a function of tempera-
ture, a minimum in f is predicted to occur at T, and the temperature of minimum
compressibility 7 is independent of pressure since dk/dT = 0 at T,. Equation (14)
also shows that for a given temperature, {¢3/0T)p decreases with increasing pressure.
These predictions have been confirmed by experiment.®~'! In Table 5, values
calculated from Eq. (13) with the parameters based on the PVT data of GL are
compared with experimental values®. Values in brackets represent the experimental
values of Ter Minassian et al®. For zero-pressure values, we compare in Table 3.
The agreement is seen to be good.

D Heat Capacity

The calculation of the heat capacity at constant pressure is based on the thermo-
dynamic equation

(Cp/eP)y = — T(E*V)CT?),p. (16)
Applying Eq. (1) to Eq. (16), we have
AC, = C(T, P) — Cp(T, 0)

dx dK d’K
= =T (5 + B VoKRy + (200 o+ JOVlR, + Ra)
C(C - N,

R 2R R 2CV0(dK)R )]
< (ﬂ)(m s Ro) =" 2 (R

(17

where
I 7AIEas
1-C v
1 vV (1+CyC
ekl
1+ C|\W
and

1[v ]
Ry=—|_——1]
clv,

Values of AC, were calculated from Eq. (17) based on the PVT data of GL. In
Table 6, a comparison is made of their values with those obtained by Ter Minassian
et al® and Vedam and Holton!2. The agreement is seen to be good except for values
at high pressures. According to Eq. (17), (¢C,/6P)r undergoes a sign change at a
certain pressure, whose value depends on the temperature. For a given temperature,
C» decreases with increasing pressure below this pressure and increases with increas-
ing pressure above this pressure. The pressure of the minimum Cp increases with
increasing the temperature. Such behavior has been observed experimentally®,
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Unfortunately, for values at higher pressures and temperatures, detailed comparisons
are not made for the lack of experimental data.

IIT CONCLUSIONS

It has been shown that for water up to 8000 bar and between 25 and 150°C, Eq. (1)
can be used to represent the volumetric data and to explain the thermodynamic
anomalies. From the equation the following are predicted: (1) The thermal expansiv-
ity increases with increasing pressure below T, = 322.65K and decreases with
increasing pressure above T,, and at T, the thermal expansivity is independent of
pressure over the entire range of pressure. (2) At higher pressures the thermal
expansivity at higher temperatures is lower than it is at the lower temperatures. (3)
As a function of temperature, a minimum in the isothermal compressibility occurs
at T, and the temperature of minimum compressibility 7, is independent of pressure.
(4) As a function of pressure, a minimum in the heat capacity at constant pressure
is predicted to occur at a certain pressure, and the pressure of the minimum heat
capacity increases with increasing the temperature.
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